Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.2 - Sum and Difference Formulas - Exercise Set - Page 670: 69

Answer

The result of $\cos \left( \alpha +\beta \right)\cos \beta +\sin \left( \alpha +\beta \right)\sin \beta $ is $\cos \alpha $.

Work Step by Step

Let us consider the given expression, $\cos \left( \alpha +\beta \right)\cos \beta +\sin \left( \alpha +\beta \right)\sin \beta $ By using the trigonometric identities, $\cos \left( \alpha +\beta \right)=\cos \alpha \cos \beta -\sin \alpha \sin \beta $ $\sin \left( \alpha +\beta \right)=\sin \alpha \cos \beta +\cos \alpha \sin \beta $ Now, the above expression can be further simplified as: $\begin{align} & \cos \left( \alpha +\beta \right)\cos \beta +\sin \left( \alpha +\beta \right)\sin \beta =\left\{ \left( \cos \alpha \cos \beta -\sin \alpha \sin \beta \right)\cos \beta +\left( \sin \alpha \cos \beta +\cos \alpha \sin \beta \right)\sin \beta \right\} \\ & =\left\{ \cos \alpha {{\cos }^{2}}\beta -\sin \alpha \sin \beta \cos \beta +\sin \alpha \cos \beta \sin \beta +\cos \alpha {{\sin }^{2}}\beta \right\} \\ & =\cos \alpha {{\cos }^{2}}\beta +\cos \alpha {{\sin }^{2}}\beta \\ & =\cos \alpha \left( {{\cos }^{2}}\beta +{{\sin }^{2}}\beta \right) \end{align}$ by using the identity ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ $\begin{align} & \cos \alpha \left( {{\cos }^{2}}\beta +{{\sin }^{2}}\beta \right)=\cos \alpha \left( {{\cos }^{2}}\beta +{{\sin }^{2}}\beta \right) \\ & =\cos \alpha \left( 1 \right) \\ & =\cos \alpha \end{align}$ Thus, $\cos \left( \alpha +\beta \right)\cos \beta +\sin \left( \alpha +\beta \right)\sin \beta $ can be simplified as $\cos \alpha $. Hence, the result of $\cos \left( \alpha +\beta \right)\cos \beta +\sin \left( \alpha +\beta \right)\sin \beta $ is $\cos \alpha $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.