Answer
The amplitude of the function is $1$ and period is $2$.
Work Step by Step
The given equation is in the form of $y=A\sin Bx$.
Here, $A=-1\text{ and }B=\pi $
So, the amplitude is:
$\begin{align}
& \text{Amplitude=}\left| A \right| \\
& =\left| -1 \right| \\
& =1
\end{align}$
The period is:
$\begin{align}
& \text{Period = }\frac{2\pi }{B} \\
& =\frac{2\pi }{\pi } \\
& =2
\end{align}$
$\text{Phase shift=}\frac{C}{B}=0$
And the quarter period is as follows:
$\begin{align}
& \text{Quarter-period}=\frac{2}{4} \\
& =\frac{1}{2}
\end{align}$
Now, add quarter periods starting from $x=\text{0}$ to generate x-values for the key points. The x-value for the first key point is as follows:
$x=\text{0}$
And the x-value for the second key point is:
$\begin{align}
& x=0+\frac{1}{2} \\
& =\frac{1}{2}
\end{align}$
And the x-value for the third key point is:
$\begin{align}
& x=\frac{1}{2}+\frac{1}{2} \\
& =1
\end{align}$
And the x-value for the fourth key point is:
$\begin{align}
& x=1+\frac{1}{2} \\
& =\frac{3}{2}
\end{align}$
And the x-value for the fifth key point is:
$\begin{align}
& x=\frac{3}{2}+\frac{1}{2} \\
& =2
\end{align}$