Answer
$\log(x^6y^2)$
Work Step by Step
Recall the log rules:
(a) $\log_b{p \cdot q} =\log p + \log q $
(b) $\log_b{\dfrac{p}{q}}=\log_b{p} - \log_b{q}$ (Quotient Rule).
(c) $\log{a^n}=n \log x $
(d) $\log_a{a^x}=x $
Use the rule (a) with $ p=x^6$ and $ q=y^2$ to obtain
$6 \log x+2 \log y=\log x^6 +\log y^2$
Simplify the second term by applying rule (c) to obtain:
$ \log x^6 +\log y^2= \log(x^6y^2)$