Answer
$3+5 \log_4 x $
Work Step by Step
Recall the log rules:
(a) $\log_b{p \cdot q} =\log p + \log q $
(b) $\log{a^n}=n \log x $
(c) $\log_a{a^x}=x $
Use the rule (a) with $ p=64$ and $ q=x^5$ to obtain
$\log_4 {64x^5}=\log_4 64+\log_4 x^5$
Simplify the second term by applying rules (b) and $(c)$ to obtain:
$\log_4 4^3+\log_4 x^5= 3+5 \log_4 x $