Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 2 - Test - Page 433: 4

Answer

The solution set for the quadratic equation, ${{x}^{2}}=4x-8$ is $\left\{ 2\pm 2i \right\}$.

Work Step by Step

Consider quadratic equation, ${{x}^{2}}=4x-8$ Convert the equation into standard form by adding $4x+8$ on both sides. $\begin{align} & {{x}^{2}}=4x-8 \\ & {{x}^{2}}-4x+8=4x-8-4x+8 \\ & {{x}^{2}}-4x+8=0 \end{align}$ Compare the equation with the standard quadratic equation $a{{x}^{2}}+bx+c=0\text{ , }\left( a\ne 0 \right)$. Here, $a=1,\text{ }b=-4\text{ and }c=8$ Apply the quadratic formula $x=\frac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ Substitute 1 for a, $-4$ for b and 8 for c. $x=\frac{-\left( -4 \right)\pm \sqrt{{{\left( -4 \right)}^{2}}-4\left( 1 \right)\left( 8 \right)}}{2\left( 1 \right)}$ Simplify the radical. $\begin{align} & x=\frac{-\left( -4 \right)\pm \sqrt{{{\left( -4 \right)}^{2}}-4\left( 1 \right)\left( 8 \right)}}{2\left( 1 \right)} \\ & =\frac{4\pm \sqrt{16-32}}{2} \\ & =\frac{4\pm \sqrt{-16}}{2} \end{align}$ As $i=\sqrt{-1}$ Therefore, $\begin{align} & x=\frac{4\pm \sqrt{16}\sqrt{-1}}{2} \\ & =\frac{4\pm 4i}{2} \\ & =\frac{2\left( 2\pm 2i \right)}{2} \\ & =2\pm 2i \end{align}$ The solutions of the quadratic are complex conjugates of each other. Hence, the solution set for the quadratic equation ${{x}^{2}}=4x-8$ is $\left\{ 2\pm 2i \right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.