Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 2 - Section 2.4 - Dividing Polynomials; Remainder and Factor Theorems - Exercise Set - Page 366: 82

Answer

The solution for the equation ${{x}^{2}}+4x-1=0$ is $x=-2\pm \sqrt{5}$

Work Step by Step

On comparing ${{x}^{2}}+4x-1=0$ with the standard form of the equation, $\begin{align} & a=1, \\ & b=4, \\ & c=-1 \\ \end{align}$ Put these values in the formula: $\begin{align} & p=\frac{-4\pm \sqrt{{{4}^{2}}-4\cdot 1\cdot \left( -1 \right)}}{2\cdot 1} \\ & =\frac{-4\pm \sqrt{16-\left( -4 \right)}}{2} \\ & =\frac{-4\pm \sqrt{16+4}}{2} \\ & =\frac{-4\pm \sqrt{20}}{2} \end{align}$ And simplifying further, $\begin{align} & p=\frac{-4\pm \sqrt{20}}{2} \\ & =\frac{-4}{2}\pm \frac{2\sqrt{5}}{2} \\ & =-2\pm \sqrt{5} \end{align}$ Thus, the two solutions of the provided equations are $x=-2+\sqrt{5}$ and $x=-2-\sqrt{5}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.