Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 11 - Section 11.4 - Introduction to Derrivatives - Exercise Set - Page 1176: 78

Answer

The x-coordinate of the vertex of the parabola whose equation is $y=a{{x}^{2}}+bx+c$ occurs when the derivative of the function is zero.

Work Step by Step

Consider the parabola $y=a{{x}^{2}}+bx+c$ , The derivative of a function is given by the formula, ${f}'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( x+h \right)-f\left( x \right)}{h}$ Find the derivative of the equation $y=a{{x}^{2}}+bx+c$ using the above formula, $\begin{align} & {f}'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\frac{a{{\left( x+h \right)}^{2}}+b\left( x+h \right)+c-\left( a{{x}^{2}}+bx+c \right)}{h} \\ & =\underset{h\to 0}{\mathop{\lim }}\,\frac{a\left( {{x}^{2}}+{{h}^{2}}+2xh \right)+bx+bh+c-a{{x}^{2}}-bx-c}{h} \\ & =\underset{h\to 0}{\mathop{\lim }}\,\frac{a{{x}^{2}}+a{{h}^{2}}+2axh+bh-a{{x}^{2}}}{h} \\ & =\underset{h\to 0}{\mathop{\lim }}\,\frac{a{{h}^{2}}+2axh+bh}{h} \end{align}$ Further solve the above. $\begin{align} & {f}'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\left( ah+2ax+b \right) \\ & =a\left( 0 \right)+2ax+b \\ & =2ax+b \end{align}$ Thus, the derivative of the function is ${f}'\left( x \right)=2ax+b$. Now, take ${f}'\left( x \right)=0$ and solve for x, $\begin{align} & {f}'\left( x \right)=2ax+b \\ & 0=2ax+b \\ & -2ax=b \\ & x=-\frac{b}{2a} \end{align}$ Thus, the value of x for which the derivative of the function is zero is $x=-\frac{b}{2a}$ It is known that the x-coordinate of the vertex of a parabola $y=a{{x}^{2}}+bx+c$ is $-\frac{b}{2a}$ , Thus, the x-coordinate of the vertex of the parabola whose equation is $y=a{{x}^{2}}+bx+c$ occurs when the derivative of the function is zero.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.