Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 11 - Section 11.2 - Finding Limits Using Properties of Limits - Concept and Vocabulary Check - Page 1153: 8

Answer

The complete statement is “$\underset{x\to a}{\mathop{\lim }}\,\text{ }\sqrt[n]{f\left( x \right)}=$$\sqrt[n]{L}$ where $ n\ge 2$ is an integer and all roots represent real numbers”.

Work Step by Step

In case of the limit of a root, find the limit of the function and then take the $ n\text{th}$ root of the limit. That is: The limit of a root: If $\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)=L $ and $ n $ is a positive integer greater than or equal to $2$, then $\underset{x\to a}{\mathop{\lim }}\,\sqrt[n]{f\left( x \right)}=\sqrt[n]{\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)}=\sqrt[n]{L}$ Where all roots represent real numbers. The limit of the $ n\text{th}$ root of a function is found by taking the limit of the function and then taking the $ n\text{th}$ root of this limit. For example: Let $ f\left( x \right)=x $, $\begin{align} & \underset{x\to 7}{\mathop{\lim }}\,\sqrt[3]{f\left( x \right)}=\sqrt[3]{\underset{x\to 7}{\mathop{\lim }}\,f\left( x \right)} \\ & =\sqrt[3]{\underset{x\to 7}{\mathop{\lim }}\,x} \\ & =\sqrt[3]{7} \end{align}$ Therefore, the complete fill for the blank in the statement “$\underset{x\to a}{\mathop{\lim }}\,\text{ }\sqrt[n]{f\left( x \right)}=\sqrt[n]{L}$ where $ n\ge 2$ is an integer and all roots represent real numbers”.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.