Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 11 - Section 11.2 - Finding Limits Using Properties of Limits - Concept and Vocabulary Check - Page 1153: 10

Answer

The correct answers to fill the blanks provided in the statement “We find $\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,f\left( x \right)$ using $ f\left( x \right)=$_______ and we find $\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,f\left( x \right)$ using $ f\left( x \right)=$_______” are ${{x}^{2}}+5$ and ${{x}^{3}}+1$ respectively.

Work Step by Step

Consider the piecewise function defined by: $ f\left( x \right)=\left\{ \begin{align} & {{x}^{2}}+5\text{ if }x<2 \\ & {{x}^{3}}+1\text{ if }x\ge 2 \\ \end{align} \right.$ To find $\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,f\left( x \right)$, look at values of $ f\left( x \right)$ when $ x $ is close to $2$ but less than $2$. Because $ x $ is less than $2$, use the first line of the piecewise function’s equation, $ f\left( x \right)={{x}^{2}}+5$ where $ x<2$. Similarly, to find $\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,f\left( x \right)$, look at values of $ f\left( x \right)$ when $ x $ is close to $2$ but greater than $2$. Because $ x $ is greater than $2$, use the second line of the piecewise function’s equation, $ f\left( x \right)={{x}^{3}}+1$ where $ x\ge 2$. Therefore, the complete statement with filled blanks would be “We find $\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,f\left( x \right)$ using $ f\left( x \right)=$${{x}^{2}}+5$ and we find $\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,f\left( x \right)$ using $ f\left( x \right)=$${{x}^{3}}+1$”.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.