Answer
a) $\underset{x\to -{{2}^{-}}}{\mathop{\lim }}\,f\left( x \right)=-5$, since, as x approaches $-2$ from the left, the value of $ f\left( x \right)$ gets closer to the y-coordinate of $-5$.
b) $\underset{x\to -{{2}^{+}}}{\mathop{\lim }}\,f\left( x \right)=-1$, since, as x approaches $-2$ from the right, the value of $ f\left( x \right)$ gets closer to the y-coordinate of $-1$.
c) $\underset{x\to -2}{\mathop{\lim }}\,f\left( x \right)$ does not exist, because the left hand and right-hand limits are unequal.
d) $ f\left( -2 \right)=-5$, because this point $\left( -2,-5 \right)$ is shown by the solid dot in the provided graph.
Work Step by Step
(a)
Consider the provided limit $\underset{x\to -{{2}^{-}}}{\mathop{\lim }}\,f\left( x \right)$.
To find $\underset{x\to -{{2}^{-}}}{\mathop{\lim }}\,f\left( x \right)$ examine the portion of the graph near $ x=-2$ but from the left.
As x approaches $-2$ from the left, the value of $ f\left( x \right)$ gets closer to the y-coordinate of $-5$. This point $\left( -2,-5 \right)$ is shown by the solid dot in the above graph.
The point $\left( -2,-5 \right)$ has a y-coordinate of $-5$.
Thus, $\underset{x\to -{{2}^{-}}}{\mathop{\lim }}\,f\left( x \right)=-5$.
Hence, the value of $\underset{x\to -{{2}^{-}}}{\mathop{\lim }}\,f\left( x \right)$ is $-5$.
(b)
Consider the provided limit $\underset{x\to -{{2}^{+}}}{\mathop{\lim }}\,f\left( x \right)$.
To find $\underset{x\to -{{2}^{+}}}{\mathop{\lim }}\,f\left( x \right)$ examine the portion of the graph near $ x=-2$ but from the right.
As x approaches $-2$ from the right, the value of $ f\left( x \right)$ gets closer to the y-coordinate of $-1$. This point $\left( -2,-1 \right)$ is shown by the open dot in the above graph.
The point $\left( -2,-1 \right)$ has a y-coordinate of $-1$.
Thus, $\underset{x\to -{{2}^{+}}}{\mathop{\lim }}\,f\left( x \right)=-1$.
Hence, the value of $\underset{x\to -{{2}^{+}}}{\mathop{\lim }}\,f\left( x \right)$ is $-1$ .
(c)
Consider the provided limit $\underset{x\to -2}{\mathop{\lim }}\,f\left( x \right)$.
To find $\underset{x\to -{{2}^{+}}}{\mathop{\lim }}\,f\left( x \right)$ examine the portion of the graph near $ x=-2$ but from the right.
As x approaches $-2$ from the right, the value of $ f\left( x \right)$ gets closer to the y-coordinate of $-1$. This point $\left( -2,-1 \right)$ is shown by the open dot in the above graph.
The point $\left( -2,-1 \right)$ has a y-coordinate of $-1$.
Thus, $\underset{x\to -{{2}^{+}}}{\mathop{\lim }}\,f\left( x \right)=-1$.
Hence, the value of $\underset{x\to -{{2}^{+}}}{\mathop{\lim }}\,f\left( x \right)$ is $-1$ .
To find $\underset{x\to -{{2}^{-}}}{\mathop{\lim }}\,f\left( x \right)$ examine the portion of the graph near $ x=-2$ but from the left.
As x approaches $-2$ from the left, the value of $ f\left( x \right)$ gets closer to the y-coordinate of $-5$. This point $\left( -2,-5 \right)$ is shown by the solid dot in the above graph.
The point $\left( -2,-5 \right)$ has a y-coordinate of $-5$.
Thus, $\underset{x\to -{{2}^{-}}}{\mathop{\lim }}\,f\left( x \right)=-5$.
Hence, the value of $\underset{x\to -{{2}^{-}}}{\mathop{\lim }}\,f\left( x \right)$ is $-5$.
Since, $\underset{x\to -{{2}^{+}}}{\mathop{\lim }}\,f\left( x \right)=-1$ and $\underset{x\to -{{2}^{-}}}{\mathop{\lim }}\,f\left( x \right)=-5$.
Here, both the left-hand limit and right-hand limit at $ x=-2$ are unequal.
Hence the provided limit $\underset{x\to -2}{\mathop{\lim }}\,f\left( x \right)$ does not exist.
(d)
Consider the provided function, $ f\left( -2 \right)$.
To find $ f\left( -2 \right)$, examine the portion of the graph near $ x=-2$.
The graph of âfâ at $ x=-2$ is shown by the solid dot in the provided graph with coordinates $\left( -2,-5 \right)$.
Thus, $ f\left( -2 \right)=-5$