Answer
a) $\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,f\left( x \right)=4$, since, as x approaches 2 from the left the value of $ f\left( x \right)$ gets closer to the y-coordinate of 4.
b)
$\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,f\left( x \right)=2$, since, as x approaches 2 from the right the value of $ f\left( x \right)$ gets closer to the y-coordinate of 2.
c) $\underset{x\to 2}{\mathop{\lim }}\,f\left( x \right)$ does not exist, because the left hand and right-hand limits are unequal.
d) $ f\left( 2 \right)=4$, because this point $\left( 2,4 \right)$ is shown by the solid dot in the provided graph.
Work Step by Step
(a)
Consider the provided limit $\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,f\left( x \right)$.
To find $\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,f\left( x \right)$ examine the portion of the graph near $ x=2$ but from the left.
As x approaches 2 from the left, the value of $ f\left( x \right)$ gets closer to the y-coordinate of 4. This point $\left( 2,4 \right)$ is shown by the solid dot in the above graph.
The point $\left( 2,4 \right)$ has a y-coordinate of 4.
Thus, $\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,f\left( x \right)=4$.
Hence, the value of $\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,f\left( x \right)$ is 4.
(b)
Consider the provided limit $\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,f\left( x \right)$.
To find $\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,f\left( x \right)$ examine the portion of the graph near $ x=2$ but from the right.
As x approaches 2 from the right, the value of $ f\left( x \right)$ gets closer to the y-coordinate of 2. This point $\left( 2,2 \right)$ is shown by the open dot in the above graph.
The point $\left( 2,2 \right)$ has a y-coordinate of 2.
Thus, $\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,f\left( x \right)=2$.
Hence, the value of $\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,f\left( x \right)$ is 2.
(c)
Consider the provided limit $\underset{x\to 2}{\mathop{\lim }}\,f\left( x \right)$.
To find $\underset{x\to 2}{\mathop{\lim }}\,f\left( x \right)$ examine the portion of the graph near $ x=2$ but from the right.
As x approaches 2 from the right, the value of $ f\left( x \right)$ gets closer to the y-coordinate of 2. This point $\left( 2,2 \right)$ is shown by the open dot in the above graph.
The point $\left( 2,2 \right)$ has a y-coordinate of 2.
Thus, $\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,f\left( x \right)=2$.
Hence, the value of $\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,f\left( x \right)$ is 2.
To find $\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,f\left( x \right)$ examine the portion of the graph near $ x=2$ but from the left.
As x approaches 2 from the left, the value of $ f\left( x \right)$ gets closer to the y-coordinate of 4. This point $\left( 2,4 \right)$ is shown by the solid dot in the above graph.
The point $\left( 2,4 \right)$ has a y-coordinate of 4.
Thus, $\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,f\left( x \right)=4$.
Hence, the value of $\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,f\left( x \right)$ is 4.
Since, $\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,f\left( x \right)=2$ and $\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,f\left( x \right)=4$.
Here, both the left-hand limit and right-hand limit at $ x=2$ are unequal.
Hence the provided limit $\underset{x\to 2}{\mathop{\lim }}\,f\left( x \right)$ does not exist.
(d)
Consider the provided function, $ f\left( 2 \right)$.
To find $ f\left( 2 \right)$, examine the portion of the graph near $ x=2$.
The graph of âfâ at $ x=2$ is shown by the solid dot in the provided graph with coordinates $\left( 2,4 \right)$.
Thus, $ f\left( 2 \right)=4$