Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 11 - Section 11.1 - Finding Limits Using Tables and Graphs - Concept and Vocabulary Check - Page 1137: 6

Answer

The complete statement is, “If $\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f\left( x \right)=L $ and $\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,f\left( x \right)=L $ then $\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)=L $.

Work Step by Step

Consider the provided limit notation, $\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f\left( x \right)=L $ Here, $ f $ is any function defined on some open interval containing the number $ a $. The function $f$ may or may not be defined at $a$. Hence, the notation $\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f\left( x \right)=L $ means that as $x$ gets closer to $a$ from the left, but remains unequal to $a$, the corresponding value of $ f\left( x \right)$ gets closer to L. Consider the other provided limit notation, $\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,f\left( x \right)=L $; this means that, as $x$ gets closer to $a$ from the right, but remains unequal to $a$, the corresponding value of $ f\left( x \right)$ gets closer to L. Since, both the limit notation $\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f\left( x \right)=L $ and $\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,f\left( x \right)=L $ are the same, this implies that the value of $ f\left( x \right)$ at $ x=a $ from the left and from the right is the same. Thus, if $\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f\left( x \right)=L $ and $\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,f\left( x \right)=L $ then $\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)=$ L.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.