Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 11 - Section 11.1 - Finding Limits Using Tables and Graphs - Concept and Vocabulary Check - Page 1137: 3

Answer

The statement, “If $\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)=L $, then the value of f at a is equal to L.” is false.

Work Step by Step

Consider the provide limit notation $\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)=L $. Here, $ f $ is any function defined on some open interval containing the number $ a $. The function f may or may not be defined at a. The notation $\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)=L $ means that as x gets closer to a, but remains unequal to a, the corresponding value of $ f\left( x \right)$ gets closer to L but is never equal to L. Consider the limit notation, $\underset{x\to 2}{\mathop{\lim }}\,\left( {{x}^{2}}+1.9 \right)=6$ To solve the notation $\underset{x\to 2}{\mathop{\lim }}\,\left( {{x}^{2}}+1.9 \right)=6$, substitute $ x=2$ in the limit notation $\underset{x\to 2}{\mathop{\lim }}\,\left( {{x}^{2}}+1.9 \right)=6$. Therefore, $\begin{align} \underset{x\to 2}{\mathop{\lim }}\,\left( {{x}^{2}}+1.9 \right)\overset{?}{\mathop{=}}\,6 & \\ \left( {{2}^{2}}+1.9 \right)\overset{?}{\mathop{=}}\,6 & \\ \left( 4+1.9 \right)\overset{?}{\mathop{=}}\,6 & \\ 5.9\approx 6 & \\ \end{align}$ Hence, it is clear that at $ x=2$ the value of $ f\left( x \right)$ is not exactly 6. Therefore, the provided statement, “If $\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)=L $, then the value of f at a is equal to L.” is false.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.