Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 11 - Cumulative Review Exercises - Page 1182: 38

Answer

The velocity of the ball after 2 seconds is approximately $-24$ feet per second.

Work Step by Step

Consider the details; the throwing function is $s\left( t \right)=-16{{t}^{2}}+40t$ after $t$ seconds. Now, the velocity is: $\begin{align} & {s}'\left( t \right)=\underset{h\to 0}{\mathop{\lim }}\,\left( \frac{s\left( t+h \right)-s\left( t \right)}{h} \right) \\ & =\underset{h\to 0}{\mathop{\lim }}\,\left( \frac{-16{{\left( t+h \right)}^{2}}+40\left( t+h \right)-\left( -16{{t}^{2}}+40t \right)}{h} \right) \\ & =\underset{h\to 0}{\mathop{\lim }}\,\left( \frac{-16{{t}^{2}}-32ht-16{{h}^{2}}+40t+40h+16{{t}^{2}}-40t}{h} \right) \\ & =\underset{h\to 0}{\mathop{\lim }}\,\left( \frac{-32ht-16{{h}^{2}}+40h}{h} \right) \end{align}$ This implies, $\begin{align} & {s}'\left( t \right)=\underset{h\to 0}{\mathop{\lim }}\,\left( \frac{h\left( -32t-16h+40 \right)}{h} \right) \\ & =\underset{h\to 0}{\mathop{\lim }}\,\left( -32t-16h+40 \right) \\ & =-32t-16\left( 0 \right)+40 \\ & =-32t+40 \end{align}$ At 2 seconds, substitute $t=2$ in the velocity equation ${s}'\left( t \right)=-32t+40$. $\begin{align} & {s}'\left( t \right)=-32t+40 \\ & {s}'\left( 2 \right)=-32\left( 2 \right)+40 \\ & =-64+40 \\ & =-24 \end{align}$ Hence, the instantaneous velocity of the ball after 2 seconds is approximately $-24$ feet per second.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.