Answer
A) $\$956793$
B) $\$356793$
Work Step by Step
(a)
From the given information, we get $P=\$15000$ for 3 months and $r=0\cdot 09$ for $t=10\,\text{years}$.
It is compounded quarterly, hence $n=4$.
Thus:
$\begin{align}
& A=\frac{15000\left[ {{\left( 1+\frac{0.09}{4} \right)}^{4\times 10}}-1 \right]}{\left( \frac{0.09}{4} \right)} \\
& =\frac{15000\left[ {{\left( 1.0225 \right)}^{4\times 10}}-1 \right]}{\left( 0.0225 \right)} \\
& =\frac{15000\left[ \left( 2.4351 \right)-1 \right]}{\left( 0.0225 \right)} \\
& =956793
\end{align}$