Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 10 - Section 10.3 - Geoetric Sequences and Series - Exercise Set - Page 1075: 78

Answer

A) $\$14163.246$. B) $\$1663.246$

Work Step by Step

(a) To find the total savings, we will have to calculate annuity, $A=\frac{P\left[ {{\left( 1+\frac{r}{n} \right)}^{nt}}-1 \right]}{\left( \frac{r}{n} \right)}$ Here $P=\$2500$ and $r=0.0625$ for $t=5\,\text{years}$. Compounded annually, hence $n=1$. Thus $\begin{align} & A=\frac{2500\left[ {{\left( 1+\frac{0.0625}{1} \right)}^{5}}-1 \right]}{\left( \frac{0.0625}{1} \right)} \\ & =\frac{2500\left[ {{\left( 1.0625 \right)}^{5}}-1 \right]}{\left( 0.0625 \right)} \\ & =\frac{2500\left[ \left( 1.3540 \right)-1 \right]}{\left( 0.0625 \right)} \\ & =14163.246 \end{align}$ (b) Here $P=\$2500$ and $r=0.0625$ for $t=5\,\text{years}$. Compounded annually, hence $n=1$. Thus $\begin{align} & A=\frac{2500\left[ {{\left( 1+\frac{0.0625}{1} \right)}^{5}}-1 \right]}{\left( \frac{0.0625}{1} \right)} \\ & =\frac{2500\left[ {{\left( 1.0625 \right)}^{5}}-1 \right]}{\left( 0.0625 \right)} \\ & =\frac{2500\left[ \left( 1.3540 \right)-1 \right]}{\left( 0.0625 \right)} \\ & =14163.246 \end{align}$ Now, interest is the difference between annuity and total deposit and total deposit is given by: $P\times n\times t$. So: $\begin{align} & Interest=14163.246-2500\times 1\times 5 \\ & =14163.246-12500 \\ & =1663.246 \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.