Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 1 - Section 1.7 - Combinations of Functions; Composite Functions - Exercise Set - Page 260: 119

Answer

The two functions f and g such that $\left( f\circ g \right)=\left( g\circ f \right)$ are $f\left( x \right)=x,g\left( x \right)=\frac{1}{x}$.

Work Step by Step

Let $f\left( x \right)=x,\text{ }g\left( x \right)=\frac{1}{x}$ The value of $\left( f\circ g \right)$ and $\left( g\circ f \right)$ can be calculated as below: $\begin{align} & f\left( g\left( x \right) \right)=g\left( x \right) \\ & =\frac{1}{x} \end{align}$ $\begin{align} & g\left( f\left( x \right) \right)=\frac{1}{f\left( x \right)} \\ & =\frac{1}{x} \end{align}$ Hence, $f\left( g\left( x \right) \right)=g\left( f\left( x \right) \right)$ Hence, one of the possible pair of functions is $f\left( x \right)=x,\,\,g\left( x \right)=\frac{1}{x}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.