Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 1 - Section 1.7 - Combinations of Functions; Composite Functions - Exercise Set - Page 260: 115

Answer

The statement is false. The correct statement is, “There can be two functions f and g, where $f\ne \text{g}$ , for which $\left( f\circ g \right)\left( x \right)=\left( g\circ f \right)\left( x \right)$.”

Work Step by Step

There exist two functions, such that $f\left( g\left( x \right) \right)=g\left( f\left( x \right) \right)$. Take $f\left( x \right)=x,\text{ g}\left( x \right)=\frac{1}{x}$ Find: $\begin{align} & f\left( g\left( x \right) \right)=g\left( x \right) \\ & =\frac{1}{x} \end{align}$ $\begin{align} & g\left( f\left( x \right) \right)=\frac{1}{f\left( x \right)} \\ & =\frac{1}{x} \end{align}$ Hence, $f\left( g\left( x \right) \right)=g\left( f\left( x \right) \right)$ The given statement “There can never be two functions f and g, where $f\ne \text{g}$ ,for which $f\left( g\left( x \right) \right)=g\left( f\left( x \right) \right)$ ” is false.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.