Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 1 - Section 1.6 - Transformations of Functions - Exercise Set - Page 245: 154

Answer

The solution set is $\left\{ -1 \right\}$.

Work Step by Step

Adding 4 to both sides, we will get $\begin{align} & \sqrt{x+10}-4+4=x+4 \\ & \sqrt{x+10}=x+4 \end{align}$ The above equation can be squared using the following property: ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ Squaring both sides of the equation, we get: $\begin{align} & \sqrt{x+10}=x+4 \\ & {{\left( \sqrt{x+10} \right)}^{2}}={{\left( x+4 \right)}^{2}} \\ & x+10={{x}^{2}}+8x+16 \\ & {{x}^{2}}+7x+6=0 \end{align}$ Now, we will solve the quadratic equation $\begin{align} & {{x}^{2}}+7x+6=0 \\ & {{x}^{2}}+6x+x+6=0 \\ & x\left( x+6 \right)+1\left( x+6 \right)=0 \\ & \left( x+1 \right)\left( x+6 \right)=0 \end{align}$ This implies, $\begin{matrix} \left( x+1 \right)=0\text{ or }\left( x+6 \right)=0 \\ x=-1\text{ or }x=-6 \\ \end{matrix}$ Now, check the results For $x=-1$ $\begin{align} & \sqrt{x+10}-4=x \\ & \sqrt{-1+10}-4=-1 \\ & \sqrt{9}-4=-1 \\ & -1=-1 \end{align}$ It is true for $x=-1$ For $x=-6$ $\begin{matrix} \sqrt{x+10}-4=x \\ \sqrt{-6+10}-4=-6 \\ \sqrt{4}-4=-6 \\ 2-4=-6 \\ -2\ne -6 \\ \end{matrix}$ It is not true for $x=-6$. Thus, the exact solution is $\left\{ -1 \right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.