Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 1 - Section 1.5 - More on Slope - Exercise Set - Page 227: 48

Answer

The solution for the equation $\sqrt{x+7}+5=x$ is $\left\{ 9 \right\}$.

Work Step by Step

Consider the equation $\sqrt{x+7}+5=x$. Simplify the the provided equation $\begin{align} & \sqrt{x+7}+5=x \\ & \sqrt{x+7}=\left( x-5 \right) \end{align}$. Square both sides of the equation. $\begin{align} & {{\left( \sqrt{x+7} \right)}^{2}}={{\left( x-5 \right)}^{2}} \\ & x+7={{x}^{2}}-10x+25 \\ \end{align}$ Collect all variables and constants on one side. $\begin{align} & x+7={{x}^{2}}-10x+25 \\ & 0={{x}^{2}}-10x+25-x-7 \\ & 0={{x}^{2}}-11x+18 \end{align}$ So, the equation is: ${{x}^{2}}-11x+18=0$ Factorize the equation to obtain the solution. ${{x}^{2}}-11x+18=0$ Choose the factors of $18$ , so that the sum of the factors is $-11$. The required factors are $2\text{ and }9$. $\left( x-9 \right)\left( x-2 \right)=0$ This gives; $x=2\text{ and }x=9$ Check the obtained solution by substitution of $x=9$ in the equation $\sqrt{x+7}+5=x$. $\begin{align} & \sqrt{x+7}+5=x \\ & \sqrt{9+7}+5\overset{?}{\mathop{=}}\,9 \\ & \text{ }4+5\overset{?}{\mathop{=}}\,9 \\ & \text{ }9\overset{?}{\mathop{=}}\,9 \\ \end{align}$ This is true. Substitute $x=2$ in the equation $\sqrt{x+7}+5=x$. $\begin{align} & \sqrt{x+7}+5=x \\ & \sqrt{2+7}+5\overset{?}{\mathop{=}}\,2 \\ & \text{ }3+5\overset{?}{\mathop{=}}\,2 \\ & \text{ }8\ne 2 \\ \end{align}$ This is false. Hence, the value $x=9$ satisfies the above equation. Thus, the solution set is $\left\{ 9 \right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.