Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 1 - Section 1.5 - More on Slope - Exercise Set - Page 227: 31

Answer

See the full explanation below.

Work Step by Step

(a) The value of the number of discharges for ${{x}_{1}}=0\text{ }$ is: $\begin{align} & f\left( x \right)=1.1{{x}^{3}}-35{{x}^{2}}+264x+557 \\ & f\left( 0 \right)=1.1{{\left( 0 \right)}^{3}}-35{{\left( 0 \right)}^{2}}+264\left( 0 \right)+557 \\ & f\left( 0 \right)=557 \\ \end{align}$ The value of the number of discharges for ${{x}_{2}}=4$ is $\begin{align} & f\left( x \right)=1.1{{x}^{3}}-35{{x}^{2}}+264x+557 \\ & f\left( 4 \right)=1.1{{\left( 4 \right)}^{3}}-35{{\left( 4 \right)}^{2}}+264\left( 4 \right)+557 \\ & f\left( 4 \right)=70.4-560+1056=557 \\ & f\left( 4 \right)=1123.4 \\ \end{align}$ Substitute the values $\left( {{x}_{2}},{{x}_{1}} \right)=\left( 4,0 \right)$ and $\left( f\left( {{x}_{2}} \right),f\left( {{x}_{1}} \right) \right)=\left( 1123.4,557 \right)$ to get the slope: $\begin{align} & m=\frac{f\left( {{x}_{2}} \right)-f\left( {{x}_{1}} \right)}{{{x}_{2}}-{{x}_{1}}} \\ & =\frac{1123.4-557}{4-0} \\ & =\frac{566.4}{4} \\ & \approx 142 \end{align}$ Therefore, the slope of the secant line is $142$ from ${{x}_{1}}=0\text{ to }{{x}_{2}}=4$. (b) The difference between the slope determines whether it is underestimates or overestimates. The difference in slope is $\begin{align} & {{m}_{2}}-{{m}_{1}}=142-137 \\ & \Delta m=5 \end{align}$ Hence, the slope overestimates by $5$ discharges per year.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.