Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 1 - Review Exercises - Page 303: 98

Answer

$2x^2+x$, $(-\infty, \infty)$ $x+2$, $(-\infty, \infty)$ $x^4+x^3-x-1$, $(-\infty, \infty)$ $\frac{x^2+x+1}{x^2-1}$, $(-\infty,-1)\cup(-1,1)\cup(1, \infty)$

Work Step by Step

Step 1. Given $f(x)=x^2+x+1$ and $g(x)=x^2-1$, we have $f+g=2x^2+x$ with domain $(-\infty, \infty)$ Step 2. We have $f-g=x+2$ with domain $(-\infty, \infty)$ Step 3. We have $fg=(x^2+x+1)(x^2-1)=x^4-x^2+x^3-x+x^2-1=x^4+x^3-x-1$ with domain $(-\infty, \infty)$ Step 4. We have $\frac{f}{g}=\frac{x^2+x+1}{x^2-1}$ with domain $(-\infty,-1)\cup(-1,1)\cup(1, \infty)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.