Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 1 - Review Exercises - Page 303: 108

Answer

See the explanation below.

Work Step by Step

(a) Now, consider $f\left( x \right)=4x-3$. Step 1: Replace $f\left( x \right)$ with $y$: $y=4x-3$ Step 2: Interchange $x$ and $y$: $x=4y-3$ Step 3: Now solve for the value of $y$: $x+3=4y$ That is, $y=\frac{x+3}{4}$ Step 4: Replace $y$ with ${{f}^{-1}}\left( x \right)$: ${{f}^{-1}}\left( x \right)=\frac{x+3}{4}$ Therefore, the inverse function ${{f}^{-1}}\left( x \right)$ of the function $f\left( x \right)=4x-3$ is ${{f}^{-1}}\left( x \right)=\frac{x+3}{4}$. (b) Consider the function, $f\left( {{f}^{-1}}\left( x \right) \right)$ $\begin{align} & f\left( {{f}^{-1}}\left( x \right) \right)=f\left( \frac{x+3}{4} \right) \\ & =4\left( \frac{x+3}{4} \right)-3 \\ & =x+3-3 \\ & =x \end{align}$ Next consider the function, ${{f}^{-1}}\left( f\left( x \right) \right)$ $\begin{align} & {{f}^{-1}}\left( f\left( x \right) \right)={{f}^{-1}}\left( 4x-3 \right) \\ & =\frac{4x-3+3}{4} \\ & =x \end{align}$ Hence, $f\left( {{f}^{-1}}\left( x \right) \right)=x$ and ${{f}^{-1}}\left( f\left( x \right) \right)=x$ for the function $f\left( x \right)=4x-3$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.