Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 1 - Review Exercises - Page 301: 48

Answer

The difference quotient of the given function is equal to $-4x-2h+1$.

Work Step by Step

To find the value of $f\left( x+h \right)$, Put $x+h$ in place of x, and then substitute in the given expression: So, $\begin{align} & f\left( x+h \right)=-2{{\left( x+h \right)}^{2}}+\left( x+h \right)+10 \\ & =-2\left( {{x}^{2}}+2xh+{{h}^{2}} \right)+x+h+10 \\ & =-2{{x}^{2}}-4xh-2{{h}^{2}}+x+h+10. \end{align}$ Now, $\begin{align} & \frac{f\left( x+h \right)-f\left( x \right)}{h}=\frac{-2{{x}^{2}}-4xh-2{{h}^{2}}+x+h+10-\left( -2{{x}^{2}}+x+10 \right)}{h} \\ & =\frac{-2{{x}^{2}}-4xh-2{{h}^{2}}+x+h+10+2{{x}^{2}}-x-10}{h} \\ & =\frac{-4xh-2{{h}^{2}}+h}{h} \\ & =-4x-2h+1. \end{align}$ Therefore, the difference quotient of the given function is equal to $-4x-2h+1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.