Answer
$30$ rows
Work Step by Step
Consider the arithmetic sequence:
$S_n=2040$
$a_1=10$
$d=4$
Determine the number of rows $n$ solving the equation:
$S_n=\dfrac{n(2a_1+(n-1)d)}{2}$
$2040=\dfrac{n(2(10)+(n-1)(4))}{2}$
$4080=n(20+4n-4)$
$4080=4n^2+16n$
$4n^2+16n-4080=0$
$4(n^2+4n-1020)=0$
$n^2+4n-1020=0$
$n^2+4n+4-1020-4=0$
$(n+2)^2-1024=0$
$(n+2-32)(n+2+32)=0$
$(n-30)(n+34)=0$
$n-30=0\Rightarrow n=30$
$n+34=0\Rightarrow n=-34$
As the number of rows must be positive, the only solution is:
$n=30$