Answer
13 terms or 27 terms
Work Step by Step
We are given the arithmetic sequence:
$a_1=78$
$d=-4$
$S_n=702$
We determine $n$ solving the equation:
$S_n=\dfrac{n(2a_1+(n-1)d)}{2}$
$702=\dfrac{n(2(78)+(n-1)(-4))}{2}$
$2(702)=n(156-4n+4)$
$1404=-4n^2+160n$
$4n^2-160n+1404=0$
$4(n^2-40n+351)=0$
$n^2-40n+351=0$
$n=\dfrac{40\pm\sqrt{(-40)^2-4(1)(351)}}{2(1)}=\dfrac{40\pm 14}{2}=20\pm 7$
$n_1=20-7=13$
$n_2=20+7=27$
Both solutions fit.