Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 11 - Systems of Equations and Inequalities - 11.2 Systems of Linear Equations: Matrices - 11.2 Assess Your Understanding - Page 732: 70

Answer

Consistent Solution set: $\left\{\left(x,y,z\right)|x=\dfrac{4z+1}{3},y=\dfrac{6-5z}{3},z\text{ is any real number}\right\}$

Work Step by Step

We are given the system of equations: $\begin{cases} 2x+y-z=4\\ -x+y+3z=1 \end{cases}$ Write the augmented matrix: $\begin{bmatrix} 2&1&-1&|&4\\-1&1&3&|&1\end{bmatrix}$ Perform row operations to bring the matrix to the reduced row echelon form: $R_1=r_2+r_1$ $\begin{bmatrix} 1&2&2&|&5\\-1&1&3&|&1\end{bmatrix}$ $R_2=r_1+r_2$ $\begin{bmatrix}1&2&2&|&5\\0&3&5&|&6\end{bmatrix}$ $R_2=\dfrac{1}{3}r_2$ $\begin{bmatrix}1&2&2&|&5\\0&1&\frac{5}{3}&|&2\end{bmatrix}$ $R_1=-2r_2+r_1$ $\begin{bmatrix}1&0&-\frac{4}{3}&|&1\\0&1&\frac{5}{3}&|&2\end{bmatrix}$ The system has two equations and 3 variables; therefore it has infinitely many solutions. Write the corresponding system of equations: $\begin{cases} x-\dfrac{4}{3}z=1\\ y+\frac{5}{3}z=2 \end{cases}$ Express $x,y$ in terms of $z$: $y+\frac{5}{3}z=2\Rightarrow y=2-\frac{5}{3}z=\dfrac{6-5z}{3}$ $x-\dfrac{4}{3}z=1\Rightarrow x=\dfrac{4}{3}z+1=\dfrac{4z+1}{3}$ The system is consistent. The solution set is: $\left\{\left(x,y,z\right)|x=\dfrac{4z+1}{3},y=\dfrac{6-5z}{3},z\text{ is any real number}\right\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.