Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 11 - Systems of Equations and Inequalities - 11.2 Systems of Linear Equations: Matrices - 11.2 Assess Your Understanding - Page 732: 63

Answer

Consistent Solution set: $\left\{\left(\dfrac{1}{3},\dfrac{2}{3},1\right)\right\}$

Work Step by Step

We are given the system of equations: $\begin{cases} 3x+y-z=\frac{2}{3}\\ 2x-y+z=1\\ 4x+2y=\frac{8}{3} \end{cases}$ Write the augmented matrix: $\begin{bmatrix} 3&1&-1&|&\frac{2}{3}\\2&-1&1&|&1\\4&2&0&|&\frac{8}{3}\end{bmatrix}$ Perform row operations to bring the matrix to the reduced row echelon form: $R_1=-r_2+r_1$ $\begin{bmatrix} 1&2&-2&|&-\frac{1}{3}\\2&-1&1&|&1\\4&2&0&|&\frac{8}{3}\end{bmatrix}$ $R_2=-2r_1+r_2$ $\begin{bmatrix}1&2&-2&|&-\frac{1}{3}\\0&-5&5&|&\frac{5}{3}\\4&2&0&|&\frac{8}{3}\end{bmatrix}$ $R_3=-4r_1+r_3$ $\begin{bmatrix}1&2&-2&|&-\frac{1}{3}\\0&-5&5&|&\frac{5}{3}\\0&-6&8&|&4\end{bmatrix}$ $R_2=-r_3+r_2$ $\begin{bmatrix}1&2&-2&|&-\frac{1}{3}\\0&1&-3&|&-\frac{7}{3}\\0&-6&8&|&4\end{bmatrix}$ $R_3=6r_2+r_3$ $\begin{bmatrix}1&2&-2&|&-\frac{1}{3}\\0&1&-3&|&-\frac{7}{3}\\0&0&-10&|&-10\end{bmatrix}$ $R_3=-\dfrac{1}{10}r_3$ $\begin{bmatrix}1&2&-2&|&-\frac{1}{3}\\0&1&-3&|&-\frac{7}{3}\\0&0&1&|&1\end{bmatrix}$ Write the corresponding system of equations: $\begin{cases} x+2y-2z=-\frac{1}{3}\\ y-3z=-\frac{7}{3}\\ z=1 \end{cases}$ Solve the system by back substitution: $z=1$ $y-3z=-\dfrac{7}{3}$ $y-3(1)=-\dfrac{7}{3}$ $y=\dfrac{2}{3}$ $x+2y-2z=-\frac{1}{3}$ $x+2\left(\dfrac{2}{3}\right)-2(1)=-\dfrac{1}{3}$ $x+\dfrac{4}{3}-2=-\dfrac{1}{3}$ $x=\dfrac{1}{3}$ The system is consistent. The solution is: $\left\{\left(\dfrac{1}{3},\dfrac{2}{3},1\right)\right\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.