Answer
$\frac{11}{12}$
Work Step by Step
To find the average of a set of terms, add up all of the terms, then divide the sum by the number of terms in the set. The following are the calculations taken to find the average of $\frac{5}{6}$, $\frac{4}{3}$, and $\frac{7}{12}$.
$(\frac{5}{6}+\frac{4}{3}+\frac{7}{12})\div3$
$=(\frac{10}{12}+\frac{16}{12}+\frac{7}{12})\div3$
$=(\frac{26}{12}+\frac{7}{12})\div3$
$=\frac{33}{12}\div3$
$=\frac{33}{12}\div\frac{3}{1}$
$=\frac{33}{12}\times\frac{1}{3}$
$=\frac{11}{12}\times\frac{1}{1}$
$=\frac{11}{12}$
The average of $\frac{5}{6}$, $\frac{4}{3}$, and $\frac{7}{12}$ is $\frac{11}{12}$.