Thinking Mathematically (6th Edition)

Published by Pearson
ISBN 10: 0321867327
ISBN 13: 978-0-32186-732-2

Chapter 6 - Algebra: Equations and Inequalities - 6.5 Quadratic Equations - Exercise Set 6.5 - Page 400: 75

Answer

The solution set is\[\left\{ -3,\,\,1 \right\}\].

Work Step by Step

Quadratic formula: \[x=\frac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\] The given equation can be written as\[\left( x-1 \right)\left( 3x+2 \right)=-7\left( x-1 \right)\]. Use the FOIL method to multiply the terms written on the left-hand sides \[\begin{align} & \left( x-1 \right)\left( 3x+2 \right)=\underbrace{x\cdot 3x}_{\text{F}}+\underbrace{x\cdot 2}_{\text{O}}+\underbrace{\left( -1 \right)\cdot 3x}_{\text{I}}+\underbrace{\left( -1 \right)\cdot 2}_{\text{L}} \\ & =3{{x}^{2}}+2x-3x-2 \\ & =3{{x}^{2}}-x-2 \end{align}\] where, “F” stands for the product of the first term, “O” stands for the product of the outside terms, “I” stands for the product of the inside term, and “L” stands for the product of the last term. So,\[\left( x-1 \right)\left( 3x+2 \right)=3{{x}^{2}}-x-2\] Therefore, \[\begin{align} & 3{{x}^{2}}-x-2=7\left( x-1 \right) \\ & 3{{x}^{2}}-x-2=7x-7 \\ \end{align}\] Simplifying \[3{{x}^{2}}+6x-9=0\] Compare the given equation with the equation\[a{{x}^{2}}+bx+c=0\], where\[a=3,\ b=6,\ \text{and }c=-9\]. Now, put these values in the quadratic formula \[x=\frac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\] \[\begin{align} & x=\frac{-6\pm \sqrt{{{6}^{2}}-4\times \left( 3 \right)\times \left( -9 \right)}}{2\times 3} \\ & =\frac{-6\pm \sqrt{36+108}}{6} \\ & =\frac{-6\pm \sqrt{144}}{6} \\ & =\frac{-6\pm 12}{6} \end{align}\] Further simplifying \[\begin{align} & x=\frac{-6\pm 12}{6} \\ & =\frac{6}{6},\frac{-18}{6} \\ & =1,-3 \end{align}\] Hence, the solution set is\[\left\{ -3,\,\,1 \right\}\].
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.