Answer
)
Consider the provided formula.
$h=4\sqrt{x}+35$
Substitute $0$ for $x$ and find $h$, that is.,
$\begin{align}
& h=4\sqrt{0}+35 \\
& =0+35 \\
& =35
\end{align}$
So, the value of $h$ is $35\text{ cm}$
(b)
Consider the provided formula.
$h=4\sqrt{x}+35$
Substitute $9$ for $x$ and find $h$, that is.,
$\begin{align}
& h=4\sqrt{9}+35 \\
& =4\sqrt{{{3}^{2}}}+35 \\
& =4\left( 3 \right)+35 \\
& =47
\end{align}$
So, the value of $h$is $47\text{ cm}$.
(c)
Consider the provided formula.
$h=4\sqrt{x}+35$
Substitute $14$ for $x$ and find $h$, that is.,
$h=4\sqrt{14}+35$
Now, use a calculator to find the value.
That is.,
$h=49.96$
So, the value of $h$ is $\text{50 cm}$
(d)
From the provided graph check the corresponding values on $y\text{-axis}$ for both curves for $x=0,9,14$. Also, write the values as calculated in above parts.