Answer
60$in^{2}$
Work Step by Step
Given a = 5in , b = 1ft = 12 in.
c = 1ft = 12 in
d = 5in
By Brahmaguptas formula, the area of cyclic quadrilateral with sides of length a,b,c and d is
A = $\sqrt (s-a)(s-b)(s-c)(s-d)$
s = $\frac{a+b+c +d}{2}$
a = 5 in, b= 12in, c = 12 in, d= 5in
s = $\frac{5+12+12+5}{2}$
= 17 in.
A = $\sqrt (17-5)(17-12)(17 - 12)(17 - 5)$
=$\sqrt 12 * 5 * 5* 12$
= $\sqrt 5^{2} * 12^{2}$ = 5 *12
= 60$in^{2}$
Therefore the area of the kite = 60 $in^{2}$.