University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 12 - Section 12.5 - Tangential and Normal Components of Acceleration - Exercises - Page 668: 3

Answer

$a=\dfrac{4}{3} \ T + \dfrac{2 \sqrt 5}{3} \ N$

Work Step by Step

$v(t)=\dfrac{dr}{dt}=i+2j+2tk $ or, $|v(t)|=\sqrt {1^2+(2)^2+(2t)^2}=\sqrt {4t^2+5}$ Next, $a(t)=\dfrac{d \ v(t)}{dt}= \dfrac{4t}{\sqrt {4t^2+5}} $ or, $|a(1)|=\dfrac{4(1)}{\sqrt {4 (1)^2+5}}=\dfrac{4}{3}$ $a_{N}=\sqrt {|a|^2 -a^2_{T}}=\sqrt {2^2 -(\dfrac{4}{3})^2}=\sqrt {4 -\dfrac{16}{9}}=\dfrac{2 \sqrt 5}{3}$ So, $a=a_T T+a_{N}=\dfrac{4}{3} \ T + \dfrac{2 \sqrt 5}{3} \ N$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.