University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 12 - Section 12.4 - Curvature and Normal Vectors of a Curve - Exercises - Page 666: 20

Answer

a) $\dfrac{6 \pi}{5} \sqrt {10}$ b) $\pi$

Work Step by Step

a) When $r(t)$ is a smooth curve, then the curvature can be written as: $\kappa =\dfrac{1}{|v|}|\dfrac{dT}{dt}|$ where $T=\dfrac{v}{|v|}$, a unit tangent vector. $v=\dfrac{dr}{dt}=-3 \sin t \ i+3\cos t j+k$ and $|v|=\sqrt {(-3 \sin t)^2+(3\cos t)^2+(1)^2}=\sqrt {10}$ $\implies T=\dfrac{v}{|v|}=\dfrac{-3 \sin t \ i+3\cos t j+k}{\sqrt {10}}$ and $|\dfrac{dT}{dt}|=\dfrac{3}{\sqrt {10}}$ Now, $\kappa =\dfrac{1}{|v|}|\dfrac{dT}{dt}|=(\dfrac{1}{\sqrt {10}} )(\dfrac{3}{\sqrt {10}})=\dfrac{3}{10}$ Total curvature: $\kappa =\int_{t_0}^{t_1} \kappa |v| dt \\=\int_{0}^{4 \pi} \dfrac{3}{10} \times \sqrt {10} \ dt \\=\dfrac{6 \pi}{5} \sqrt {10}$ b) Use the parametric equations $x=t; y =t^2$ Now, $v=\dfrac{dr}{dt}=i+2t \ j$ and $|v|=\sqrt {(1)^2+( 2t)^2}=\sqrt {1+4t^2}$ $\implies T=\dfrac{v}{|v|}=\dfrac{i+2t \ j}{\sqrt {1+4t^2}}$ and $\dfrac{dT}{dt}=\dfrac{-4t}{(1+4t^2)^{3/2}}i+\dfrac{2}{(1+4t^2) \sqrt {1+4t^2}}j$ and $|\dfrac{dT}{dt}|=\sqrt {\dfrac{-4t}{(1+4t^2)^{3/2}})^2+(\dfrac{2}{(1+4t^2) \sqrt {1+4t^2}})^2}=\dfrac{2}{1+4t^2}$ $\kappa =\dfrac{1}{|v|}|\dfrac{dT}{dt}|=)\dfrac{1}{\sqrt {1+4t^2}} )(\dfrac{2}{\sqrt {1+4t^2}})=\dfrac{2 \sqrt {4t^2+1}}{(1+4t^2)^2}$ Total curvature: $\kappa =\int_{t_0}^{t_1} \kappa |v| dt \\=\int_{-\infty}^{ \infty} \dfrac{2 \sqrt {4t^2+1}}{(1+4t^2)^2} (\sqrt {1+4t^2} ) dt \\=[\tan^{1} (2t)]_{-\infty}^{ \infty} \\=(2) \times \tan^{-1} (\infty)=(2) \times (\dfrac{\pi}{2})=\pi$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.