University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 12 - Section 12.4 - Curvature and Normal Vectors of a Curve - Exercises - Page 666: 19

Answer

Maximum value of $\kappa= \dfrac{1}{2b}$

Work Step by Step

$\dfrac{d \kappa}{da}=\dfrac{d}{da}[\dfrac{a}{a^2+b^2}]=\dfrac{b^2-a^2}{(a^2+b^2)^2}$ Maximum value is: $ \dfrac{d \kappa}{da}=0$ or, $\dfrac{b^2-a^2}{(a^2+b^2)^2}=0$ or, $b^2-a^2 =0$ or, $ a=\pm \sqrt {b^2}$ Since, $a, b \geq 0$ So, $a=b$ Now, $\dfrac{d\kappa}{da} \lt 0$ when $a \gt b$ and $\dfrac{d\kappa}{da} \gt 0$ when $a \lt b$ Thus, $\kappa $ has a maximum value at $a=b$ . $\implies \kappa (b)=\dfrac{b}{b^2+b^2}=\dfrac{1}{2b}$ Thus, the maximum value of $\kappa$ is $\dfrac{1}{2b}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.