University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 12 - Section 12.2 - Integrals of Vector Functions; Projectile Motion - Exercises - Page 654: 8

Answer

$3 (\ln 3-1)i+(3-e)j+[\ln 3 (\ln (\ln 3)-1)+1] k$

Work Step by Step

We need to integrate the given integral as follows: $[\int_{1}^{\ln 3} t e^{t} dt]i+[\int_{1}^{\ln 3} e^{t} dt]j+[\int_{1}^{\ln 3} \ln t dt]k=[\int_{1}^{\ln 3} t e^{t}+e^t dt-\int_{1}^{\ln 3} e^{t}]i+[\int_{1}^{\ln 3} e^{t} dt]j+[\int_{1}^{\ln 3} \ln t dt]k$ or, $[\int_{1}^{\ln 3} t e^{t}+e^t dt-\int_{1}^{\ln 3} e^{t}]i+[\int_{1}^{\ln 3} e^{t} dt]j+[\int_{1}^{\ln 3} \ln t dt]k=[(t-1)e^t]_{1}^{\ln 3}i+[e^t]_{1}^{\ln 3}j+[t\ln t-1]_1^{\ln 3}k$ Thus, $[3 (\ln 3-1)-(0)e^{0}]i+(3-e) j+(\ln (\ln 3)-1)-(1)(0-1)k=3 (\ln 3-1)i+(3-e)j+[\ln 3 (\ln (\ln 3)-1)+1] k$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.