University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 12 - Section 12.2 - Integrals of Vector Functions; Projectile Motion - Exercises - Page 654: 6

Answer

$\pi i+\dfrac{\pi \sqrt 3}{4}k$

Work Step by Step

We need to integrate the given integral as follows: $[\int_{0}^{1} \dfrac{2}{\sqrt {1-t^2}} dt)]i+[\int_{0}^{1} \dfrac{\sqrt 3}{1+t^2} dt)]k=[2 \sin^{-1} t]_{0}^{1} i+[\sqrt 3 \tan^{-1} t]_{0}^{1} k $ or, $[2 \sin^{-1} t]_{0}^{1} i+[\sqrt 3 \tan^{-1} t]_{0}^{1} k =(\sin^{-1} (1)-\sin^{-1} (0))i+(\tan^{-1} (1)-\tan^{-1} (0))k$ Thus, $(\sin^{-1} (1)-\sin^{-1} (0))+(\tan^{-1} (1)-\tan^{-1} (0))=\pi i+\dfrac{\pi \sqrt 3}{4}k$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.