University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 11 - Section 11.4 - The Cross Product - Exercises - Page 622: 7

Answer

${\bf u}\times{\bf v}$ has length $6\sqrt{5}$ and direction $\displaystyle \frac{\sqrt{5}}{5}{\bf i}-\frac{2\sqrt{5}}{5}{\bf k}$ ${\bf v}\times{\bf u}$ has length $6\sqrt{5}$ and direction $-\displaystyle \frac{\sqrt{5}}{5}{\bf i}+\frac{2\sqrt{5}}{5}{\bf k}$

Work Step by Step

${\bf w}={\bf u}\times{\bf v}=\left|\begin{array}{lll} {\bf i} & {\bf j} & {\bf k}\\ -8 & -2 & -4\\ 2 & 2 & 1 \end{array}\right|$ $=(-2+8){\bf i}-(-8+8){\bf j}+(-16+4){\bf k}$ $=6{\bf i}-12{\bf k}$ $|{\bf w}|=\sqrt{36+144}=\sqrt{180}=6\sqrt{5}$ and the unit vector parallel to ${\bf w}$ is $\displaystyle \frac{{\bf w} }{|{\bf w} |}= \frac{6}{6\sqrt{5}}{\bf i}-\frac{12}{6\sqrt{5}}{\bf k}$ ${\bf w}=6\displaystyle \sqrt{5}( \frac{\sqrt{5}}{5}{\bf i}-\frac{2\sqrt{5}}{5}{\bf k})$ ${\bf u}\times{\bf v}$ has length $6\sqrt{5}$ and direction $\displaystyle \frac{\sqrt{5}}{5}{\bf i}-\frac{2\sqrt{5}}{5}{\bf k}$ By property 3 (see "Properties of the Cross Product" box on p. 618) ${\bf v}\displaystyle \times{\bf u}=-{\bf w}=6\sqrt{5}( -\frac{\sqrt{5}}{5}{\bf i}+\frac{2\sqrt{5}}{5}{\bf k})$ ${\bf v}\times{\bf u}$ has length $6\sqrt{5}$ and direction $-\displaystyle \frac{\sqrt{5}}{5}{\bf i}+\frac{2\sqrt{5}}{5}{\bf k}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.