University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 11 - Section 11.3 - The Dot Product - Exercises - Page 616: 14

Answer

$\dfrac{\pi}{2}$ or $90 ^{\circ}$

Work Step by Step

The formula to calculate the angle between two planes is: $ \theta = \cos ^{-1} (\dfrac{p \cdot q}{|p||q|})$ Here, $\overrightarrow{AC}=\lt 2,4 \gt$ and $\overrightarrow{DB}=\lt -4,2 \gt$ $|\overrightarrow{AC}|=\sqrt{(2)^2+(4)^2}= \sqrt {20}$ and $|\overrightarrow{DB}|=\sqrt{(-4)^2+(2)^2}=\sqrt {20}$ Thus, $ \theta = \cos ^{-1} (\dfrac{\overrightarrow{AC} \cdot \overrightarrow{DB}}{|\overrightarrow{AC}||\overrightarrow{DB}|})=\cos ^{-1} (\dfrac{(2)(-4)+(4)(2)}{ ( \sqrt {20})(\sqrt 20)})=\cos ^{-1} (0)$ or, $ \theta =\dfrac{\pi}{2}$ or $90 ^{\circ}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.