Answer
$0.84$ rad
Work Step by Step
The formula to calculate the angle between two planes is:
$ \theta = \cos ^{-1} (\dfrac{p \cdot q}{|p||q|})$
Here, $p=\lt 2,-2,1 \gt$ and $q=\lt 3,0,4 \gt$
$|p|=\sqrt{2^2+(-2)^2+1^2}= \sqrt {9}=3$ and $|q|=\sqrt{3^2+0^2+(4)^2}=\sqrt {25}=5$
Thus, $ \theta = \cos ^{-1} (\dfrac{p \cdot q}{|p||q|})=\cos ^{-1} \dfrac{10}{ (3)(5)})=\cos ^{-1} \dfrac{10}{15}$
or, $ \theta \approx 0.84$ rad