Answer
$\lt \dfrac{8}{\sqrt{17}},\dfrac{-2}{\sqrt{17}} \gt$
Work Step by Step
Here, $|v|=\sqrt{(4)^2+(-1)^2}=\sqrt {17}$
The unit vector $\hat{\textbf{u}}$ can be calculated as: $\hat{\textbf{u}}=\dfrac{v}{|v|}$
Now, $\hat{\textbf{u}}=\dfrac{\lt 4,-1 \gt}{\sqrt {17}}= \lt \dfrac{4}{\sqrt{17}},\dfrac{-1}{\sqrt{17}} \gt$
Thus, $2 \hat{\textbf{u}}=2\lt \dfrac{4}{\sqrt{17}},\dfrac{-1}{\sqrt{17}} \gt=\lt \dfrac{8}{\sqrt{17}},\dfrac{-2}{\sqrt{17}} \gt$