Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 6: Applications of Definite Integrals - Section 6.3 - Arc Length - Exercises 6.3 - Page 335: 9

Answer

$$\frac{53}{6}$$

Work Step by Step

Given $$y=\frac{x^{3}}{3}+\frac{1}{4 x}, \quad 1 \leq x \leq 3$$ Since \begin{align*} y'&= x^2 -\frac{1}{4x^2} \\ y'^2&= \left( x^2 -\frac{1}{4x^2} \right)^2\\ &= x^4-\frac{1}{2} +\frac{1}{16x^4} \end{align*} Then \begin{align*} 1+y'^2&= 1+x^4-\frac{1}{2} +\frac{1}{16x^4}\\ &=x^4+\frac{1}{2} +\frac{1}{16x^4}\\ &=\left(x^2+\frac{1}{4x^2} \right)^2 \end{align*} Hence, the arc length is given by \begin{align*} L&=\int_{1}^{3}\sqrt{1+y'^2}dx\\ &= \int_{1}^{3}\sqrt{\left(x^2+\frac{1}{4x^2} \right)^2}dx\\ &= \int_{1}^{3} \left(x^2+\frac{1}{4x^2} \right)dx\\ &=\frac{x^3}{3} -\frac{1}{4x}\bigg|_{1}^{3}\\ &=\frac{26}{3}+\frac{1}{6}\\ &= \frac{53}{6} \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.