Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 6: Applications of Definite Integrals - Section 6.3 - Arc Length - Exercises 6.3 - Page 335: 11

Answer

2

Work Step by Step

x=\int_{y}^{0}\sqrt{sec^4(t)-1}dt on -\frac{\pi}{4}\leq y\leq \frac{\pi}{4} Consider: x=f(y) In order to find the length of the curve, use the arclength formula: If x=f(y) is continuous and differentiable on c\leq y \leq d then {\color{Red} L=\int_{c}^{d}\sqrt{1+(\frac{dx}{dy})^2}dy } 1) Find \frac{dx}{dy} \frac{\mathrm{d}}{\mathrm{d}y} \int_{0}^{y} \sqrt{sec^4(t)-1}dt=\sqrt{sec^4(y)-1} because of Part 1 of the Fundamental Theorem of Calculus: \frac{\mathrm{d}}{\mathrm{d}x} \int_{a}^{x} f(t)dt=f(x) 2) Plug \frac{dx}{dy} into the arclength formula L=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\sqrt{1+(\sqrt{sec^4(y)-1})^2}dy 3) Solve \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\sqrt{1+sec^4(y)-1}dy=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\sqrt{sec^4(y)}dy=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}sec^2(y)dy=[tan(y)]_{-\frac{\pi}{4}}^{\frac{\pi}{4}}=tan(\frac{\pi}{4})-tan(-\frac{\pi}{4})=1-(-1)=1+1=2
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.