Answer
$8 \pi$
Work Step by Step
We need to use the shell model as follows:
$V=\int_p^{q} (2 \pi) \cdot (\space radius \space of \space shell) ( height \space of \space Shell) \space dx$
$ \implies V= \int_0^{2} (2 \pi) \cdot (x)[x-\dfrac{-x}{2}] dx$
Now, $V=2 \pi \times \int_{0}^{2} [x^2] dx$
or, $= \pi \times [x^3]_{0}^{2}$
or, $=8 \pi$