Answer
$14 \pi $
Work Step by Step
We need to use the shell model as follows:
$V=\int_p^{q} (2 \pi) \cdot (\space radius \space of \space shell) ( height \space of \space Shell) \space dx$
$ \implies V= \int_1^{4} (2 \pi) \cdot (x)[\dfrac{3}{2 \sqrt x}] dx$
Now, $V=3 \pi [\dfrac{x^{3/2}}{3/2}]_{1}^{4}$
or, $=2 \pi \times (8-1)$
or, $=14 \pi $