Answer
$3308 \space cm^3$
Work Step by Step
We integrate the integral to calculate the volume as follows:
$V= \pi \times \int_{-16}^{-7} (256-y^2) dy$
Now, $V= \pi \times [256 y-\dfrac{y^3}{3}]_{-16}^{-7}$
or, $Volume= \pi \times [256 (7) y-\dfrac{(343)}{3}+256(16)-(4096/3)]=1053 \pi =3308 \space cm^3$