Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 6: Applications of Definite Integrals - Section 6.1 - Volumes Using Cross-Sections - Exercises 6.1 - Page 323: 49

Answer

a. $\frac{16\pi}{15} $ b. $\frac{56\pi}{15} $ c. $\frac{64\pi}{15} $

Work Step by Step

a. Draw a diagram as shown in the figure. With the enclosed region revolving around $y=1$, use disk approximation and symmetry to get $V=2\int_0^1 \pi (1-x^2)^2 dx=2\pi (1-2x^2+x^4) dx=2\pi (x-\frac{2}{3}x^3+\frac{1}{5}x^5)|_0^1=2\pi (1-\frac{2}{3}(1)^3+\frac{1}{5}(1)^5)=\frac{16\pi}{15} $ b. With the enclosed region revolving around $y=2$, use washer approximation and symmetry to get $V=2\int_0^1\pi((2-x^2)^2-(2-1)^2)dx=2\pi\int_0^1(3-4x^2+x^4)dx=2\pi (3x-\frac{4}{3}x^3+\frac{1}{5}x^5)|_0^1=2\pi (3-\frac{4}{3}(1)^3+\frac{1}{5}(1)^5)=\frac{56\pi}{15} $ c. With the enclosed region revolving around $y=-1$, use washer approximation and symmetry to get $V=2\int_0^1\pi((1+1)^2-(1+x^2)^2)dx=2\pi\int_0^1(3-2x^2-x^4)dx=2\pi (3x-\frac{2}{3}x^3-\frac{1}{5}x^5)|_0^1=2\pi (3-\frac{2}{3}(1)^3-\frac{1}{5}(1)^5)=\frac{64\pi}{15} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.