Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.5 - Indefinite Integrals and the Substitution Method - Exercises 5.5 - Page 305: 87

Answer

$I=\frac{a}{2}$

Work Step by Step

Step 1. Letting $u=a-x$, we have $du=-dx$ and $x=0\to u=a$, $x=1\to u=0$ Step 2. Evaluate the integral $I=\int_0^a\frac{f(x)}{f(x)+f(a-x)}dx=\int_a^0\frac{f(a-u)}{f(a-u)+f(u)}(-du)=\int_0^a\frac{f(a-u)}{f(a-u)+f(u)}du$ Step 3. Let $J=\int_0^a\frac{f(a-u)}{f(a-u)+f(u)}du=\int_0^a\frac{f(a-x)}{f(a-x)+f(x)}dx$ (simply switching a symbol here), we have $I+J=\int_0^a\frac{f(x)+f(a-x)}{f(a-x)+f(x)}dx=\int_0^a(1)dx=x|_0^a=a$ Step 4. Since $I=J$, we have $I=\frac{a}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.