Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Practice Exercises - Page 309: 75

Answer

$$\frac{{dy}}{{dx}} = - \frac{6}{{3 + {x^4}}}$$

Work Step by Step

$$\eqalign{ & y = \int_x^1 {\frac{6}{{3 + {t^4}}}} dt \cr & {\text{Use the integral property }}\cr &\int_a^b {f\left( x \right)} dx = - \int_b^a {f\left( x \right)} dx \cr & y = - \int_1^x {\frac{6}{{3 + {t^4}}}} dt \cr & {\text{Differentiate both sides}} \cr & \frac{{dy}}{{dx}} = - \frac{d}{{dx}}\left[ {\int_1^x {\frac{6}{{3 + {t^4}}}} dt} \right] \cr & {\text{Use the fundamental theorem of calculus part 1 }}\cr &\frac{d}{{dx}}\left[ {\int_a^x {f\left( t \right)dt} } \right] = f\left( x \right) \cr & \frac{{dy}}{{dx}} = - \left( {\frac{6}{{3 + {{\left( x \right)}^4}}}} \right) \cr & \frac{{dy}}{{dx}} = - \frac{6}{{3 + {x^4}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.