Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Practice Exercises - Page 309: 74

Answer

$$\frac{{dy}}{{dx}} = 14x\sqrt {2 + {{\cos }^3}\left( {7{x^2}} \right)} $$

Work Step by Step

$$\eqalign{ & y = \int_2^{7{x^2}} {\sqrt {2 + {{\cos }^3}t} } dt \cr & {\text{Differentiate both sides}} \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {\int_2^{7{x^2}} {\sqrt {2 + {{\cos }^3}t} } dt} \right] \cr & {\text{Use the fundamental theorem of calculus part 1}}\cr &\frac{d}{{dx}}\left[ {\int_a^x {f\left( t \right)dt} } \right] = f\left( x \right) \cr & {\text{and the chain rule}} \cr & \frac{{dy}}{{dx}} = \sqrt {2 + {{\cos }^3}\left( {7{x^2}} \right)} \frac{d}{{dx}}\left[ {7{x^2}} \right] \cr & {\text{Simplify}} \cr & \frac{{dy}}{{dx}} = \sqrt {2 + {{\cos }^3}\left( {7{x^2}} \right)} \left( {14x} \right) \cr & \frac{{dy}}{{dx}} = 14x\sqrt {2 + {{\cos }^3}\left( {7{x^2}} \right)} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.